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Compounds with the formula@R), were first synthesized
in 1895! but have been generally overlooked until the past few
years?=> It has been recognized since 1935 thgCR), can
possibly exist in three isomeric form$;3.6 Structure3 was

R—O—SIS—O—R (RO)LS=S (RO)(RS)S=O
2 3

readily ruled out by NMR, but the appearance of an ABM
pattern for 3(OCH,CHjs), has been insufficient to distinguish
dialkoxy disulfide1 from the branch-bonded isomark”
Although we have depicted,@CH,Ar), as the disulfide in
our S synthetic worlg the persistent presence of diastereotopic
methylene protons in thé! NMR from —70 to ca. 75C, where

119,12685-12686 12685

although only a single exampld,(Figure 1) has been verified
since by X-ray crystallographyt.

We have performed a combined theoretical and spectroscopic
study to show that the structures of th€@@CH,Ar), compounds
in solution are definitively dialkoxy disulfideswith unusually
high barriers to rotation about the-S bond. The conformers
of dimethoxy disulfide (and all other ,8CH;s), isomers
considered here) were optimized at the MP2/6-311G(3d) and
Becke3LYP/6-311G* levels of theol/to obtain geometries/
relative energies and vibrational frequencies, respectively. The
lowest energy conformer df; symmetry,5, is in agreement
with the electron diffraction structure and the theoretical studies
of SteudeP® In sharp contrast to thiosulfoxidé%the global
minimum conformation of the branch-bonded isoméy,is
predicted to be more stable tharby 1.9 kcal/mol when zero
point energy (ZPE) corrections are included. We conclude that
the energies of the isomers are sufficiently close to justify
considering transformation between them, although the absolute
energy difference is open to questin.

To assign the structure, we have calculated various spectra
for 1 and2 and compared them with experiment. MM3 force
fields for both ROSSOR and (Rg5=S have been developed
from a blend of structural and ab initio data to assist the &sk.
MM3 conformational analysis df and2 (R = CH,Ph) followed
by single point Becke3LYP/3-21G*/GIAO calculatididof the
proton chemical shifts of low-energy conformations yields four
methylene proton shifts fromd = 3.5-5.0 and 4.6-5.5 ppm,

the peaks coalesce and the compounds decompose, leaves threspectively, relative to TMS. The predicted peak positions

distinction betweenl and 2 unresolved. To be sure,»S
(OCH;R), analogues are in the disulfide form in the gas pffase
and the solid stat®> However, the low barriers to rotation
about S-O and S-S bonds (6-98% and 8-10?%10kcal/mol,
respectively), the existence of isomers fosF§!! and the
capacity for isomerization of FSSF te$=S above—-100°C!?
continue to suggest the possibility tHatearranges to branch-
bonded valence isom@rin solution?® The latter would display

bracket the experimental ones (CRQL.76, 4.81, 4.87, and 4.93
ppm). Proton NMR is unable to distinguish between the
isomers.

Turning to vibrational spectra, we note that dimethoxy
disulfide 5 exhibits a band at 525530 cnt?! assigned by HF/
6-311G* normal coordinate analysis as the Sstretch ¢ss
(calc) = 489 cnt1).3¢ The unscalet® Becke3LYP/6-311G*
value from the present work igs= 468 cntl. With the same

diastereotopic methylene protons at ambient temperature andnethod, thionosulfites and the simple five-membered ring

carries the potential for NMR coalescence due to inversion at
S(E=S). The branch-bonded dialkoxy disulfide linkage in small
rings was justifiably claimed by Thompson as early as 1964,
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analogue o# are predicted to possess relatively intenseSS
stretches at 639 and 643 cinrespectively. As a result, we
assign the moderately strong frequency of thionosulfi 650
(IR, Nujol) and 652 cm! (Raman, neat) to the-SS vibration.
Compoundd (R = CH,Ph, CHPhp-NO,) show weak IR and
Raman bands from 524629 cnt! in various media including
CHCIs, but nothing in the higher energy thionosulfite region.
Vibrational analysis of optimized conformations by MM3 is
confirmatory: 1 and2 (R = CHyPh),vsdcalc)= 505-520 and
640—-665 cntl, respectively.

In the UV, the OSSO moiety for both alkyl and benzylic
structures is calculated by ZIND®to be transparent at
wavelengths greater than 200 nm. The branch-bonded moiety,
however, is predicted to show severalSsS absorption bands
from 230 to 275 nm. In pentane, thionosulite&lisplays peaks
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Figure 1. Structures of4 (X-ray) and5 and 6 (MP2/6-311G(3d)
optimized).
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Figure 2. TheH NMR spectrum of disulfidel (R = CH(CHs)Ph)
at 250 ¢ = 2500) and 3114 = 195), whilel (R = CH,Ph) prepared from racemic phenethyl alcohol; CE@5 °C.
shows only tailing beyond 196 nm (€ &max 250—260 nm ¢
< 200)). no unambiguous case of atropisomef&harising entirely from

To assess the dynamic process underlying the observed 73lectronic effects has been reportéd.
°C coalesence temperature bR, three transition states have The high S-S rotational barrier for ROSSOR relative to
been examined with MP2/6-311G(3d). The predicted barriers RSSR should permit the unprecedented separation and isolation
for intramolecular migration of RO in the rearrangementlof ~ of disulfide torsional enantiomers. As a first step in this
to 2 (R = CHs) and the inversion of branch-bonded sulfuin  direction, (PhCHOS) and f-NO,PhCHOS) have been treated
(R = CHy) are 37.5 and 32.3 kcal/mol, respectively. Neither gradually with 1 equiv of the chiral shift reagent Eu(hfa)
process can be expected to operate at temperatures at whickeDClL. The lower doublet of the AB system centered around
S,(OCH,AT), analogues are thermally accessible. Calculation 4.9 ppm separates into doublets. Solvent dilution shows the
of the trans torsional barri#rfor dimethoxy disulfide corrected ~ complexation to be reversible. An even more striking effect is
for ZPE vyields a value of 18.1 kcal/mol. The coalescence of evident if the disulfide is prepared from phenethyl alcoHgl (
the AB pattern ofl (R = CHyPh) at 75°C as it undergoes R = CH(CHg)Ph). The room-temperature NMR (CD{lof
decomposition likewise translates to an activation barrigk,of ~ the CH(CH,) moiety from theR(+)-alcohol exhibits two equally
= 17.8 kcal/mol. The experimental and theoretical barrier intense doublets and quartets, while racemic alcohol delivers
maxima agree extremely well with one another and require that the expected splitting of all signals (Figure 2); a powerful
the Thompson dialkoxy disulfide barriéf be adjusted upward ~ demonstration of chirality for (RO—S).
by 9.2 kcal/mol. The results likewise confirm that Seel's
measurement is in fact an-S torsional barrief.10.20 Acknowledgment. J.P.S. and N.N. are grateful to Professor Dennis
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